SOLVING THE EQUATION OF MASS TRANSFER IN
A STATIONARY BED OF GRANULAR MATERIAL
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A general procedure is proposed for the exact integration of a system of quasilinear dif-
ferential equations often encounteredinproblems concerning the cohvective mass transfer
in a bed of granular material with reaction at the surface and in the volume of particles,

Various problems concerning the convective mass transfer in a stationary bed of homogeneous gran-
ular material can often be reduced [1-4] to solving the following dimensionless system of differential equa~
tions:
op o v 1
n (¥ 5% 4

The specific kind of function F () is determined hy the mode of reactions which occur at the surface and

in the volume of particles making up the bed [1-5].

We will outline here a general procedure for the exact integration of system (1). Individual problems
were earlier solved either as special cases [1] or by numerical methods [2]. The reaction equations (1) ap-
ply only to the inside of the reaction zone (Fig. 1), which ata given instantoftime is definedby the inequality

E () >E>E"(n). (2)

The boundaries of the reaction zonet £, and £* are not known a priori and will be determined in the course
of the solution. When ¢ > £, (), the material has not yet entered into a reaction with the gas and, conse-
quently, w =3 = 0. On the other hand, the zone of material which has reacted already (w =y = 1) is defined
by the inequality ¢ < £*().

At a fixed depth £ the reaction begins at time 1 =1, (¢), where function 7, (¢) is the inverse of function
£, (. Therefore, the initial condition for system (1) can be stated as

.ty =% lnen,e) =0. @)
We note that n,(0) = 0, inasmuch as the reaction at the bed surface begins atn = 0.

Formulating the boundary conditions is somewhat more difficult. When 7 < 7,(0), where function
n* () is the inverse of function £*(n), the material at the surface has not yet reacted completely and, there-
fore, we have a single boundary condition:

oo = 1. @

As a consequence of this condition, from Eq. (1) for ¢ = 0 follows directly an equation which characterizes
the reaction trend in particles at the bed surface: '

n=~h (‘Po) (Yo =1 !g:o)y 6

1 For convenience, time and distance will be represented by their dimensionless analogs # and &, respec-
tively.
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Function h(y) must exist for sufficiently small positive values of .
Otherwise, relation (5) would be physically meaningless and the reaction in
the particles could not begin. At small values of y, therefore, function F ()
must behave like y@, where ¢ is a real number smaller than unity.

The reaction at the bed surface will be completed at the instant of time
n* (0) = A(1). 7)

In the physical sense, function F(y) is positive and becomes zero when
¢ — 1. Therefore, near unity F(y) must decrease like (1—:/))3 B > 0). Con-
sequently, at ¢ =1 integral (6) is an improper one and can exist only on
the interval 0 < 8 < 1. In this case the reaction time at the bed surface
7 =7*(0) is finite (see Eq. (7)). When n > n*(0), the reaction zone separates
from the geometric surface and the following two boundary conditions apply
as a result:

Fig. 1. Distribution of
the material conversion
factor across the bed
thickness at various in-
stants of time: 7y < 77%(0),
7l > N4 (0).

Yletron =% le=gem = L. ®

When 8 = 1, on the other hand, then integral (6) becomes divergent at 3 = 1 and the reaction will continye
for an infinitely long time (n*(0) = ©). Moreover, the boundary condition (@) remains valid and toward the
end of the reaction is definable only as an approximation within any necessary accuracy.

We note that the emergence of two boundary conditions (8) instead of one @) at n > n*(0) does not
make the problem indeterminate because the equation of boundary ¢ = £*(n) is not known. A similar situa-
tion is found in the case of the initial conditions (3).

We will now proceed to the direct integration of system (1) under the constraints (3), @), and (8).
This we begin by rewriting the first of Egs, (1) as

oh " ()

and then differentiating it partially with respect to ¢&. Then, after some transformations and taking Egs.
(1) into consideration, we obtain

i(__l_.aiﬁp)jo‘ (10)

This, together with the initial condition (3), yields

e L —— .
F(y) 0g F@) 08 fn=na

Next we differentiate the first initial condition (3) with respect to £. This yields

19 1o 1 (1)

ap . op M (12)
¥ ERA & .
0% fnn.®  OM h=m.@ dE.
When F(0) = 0, it follows directly from relation (12) that
R __ b o s (13)
F{y) 98 Jn=n.® Fg) an ]m=m(§) dg '

As a consequence of the first of Egs. (1), we have then

R ] dne (14)

F(§) 0 hn.@ -
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Since the lower boundary of the reaction zone shifts at a rate d¢,/dn which cannot be equal to zero
and, therefore, dn*/dt < « and relation (14), according to the second of initial conditions (3) becomes

o, 19
F@) 0§ In=n.

From the continuity standpoint, this relation is valid also when F(0) = 0. Thus, satisfying the initial
conditions (3) ensures that the ordinary differential equation

A
N wFw) —0 (16)
o8 BF ()
will apply to the inside of the reaction zone. Before directly integrating Eq. (16), we let
9 m* (17)
0 P

which follows directly from (16) and (1). From (17) we have

2,

%: “| L a<ro),
. Y jg=0 18)
N )
P Y le=grm)
From this expression, and in view of the boundary conditions @), (8), we conclude that
w=Y 0<n<n*(0) (19)
o
applies as long as the reaction at the bed surface is not completed,
On the other hand, after the reaction zone has separated from the bed surface,
w =19, 1> n*(0). (20)

The solution to Eq. (16) and the reaction trend in the bed volume depend mostly on the values of ¥ (0)
and of dF /dy|, _4. The character of these quantities can be established by the values of the earlier in-
troduced exponents ¢ and 5. Several quantitatively different situations are possible here.

1. Exponent 8 = 1 and, therefore

dF :{ 0 p>1 1)
dll) p=1 const P=1.

Then the instant of time n*(0) (7) moves to infinity, the reaction at the bed surface continues infinitely long,
and the upper boundary of the reaction zone £*m) passes through the bed surface. How the material conver-
sion factor varies across the bed thickness is determined, according to Eq. (16), from

g (b, V) =§, (22)
where
b o
o= | -2 (23)
g (b, ) é o

and the conversion factor at the bed surface is determined from relation (5).
1a. Along with inequality § = 1, inequality 0 < o < 1 is also valid. This means that

0 0<05< 1, (24)
const o =0.

F@:{

The integral in (23) is here infinite for 3 = 0 and, consequently, the reaction zone covers the entire hed
(¢*m) = ). Such a situation can occur when the reaction inside an individual particle is intrakinetic (at a
variable size of the reaction surface) with autocatalysis (0 < o < 1) or without it (@ = 0). For such trends
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of the reaction, function F(y) can be represented as
F () = ¢* (1 —)P, (25)

where exponent o characterizes the progress of autocatalysis and g characterizes the reduction of the
reaction surface per unit particle volume during the reaction. We note that functions F () of type (25) are
often used in equations of formal kinetics [5] where, however, the exponents ¢ and 8 can be treated in a
different manner,

Another example of this kind of mass transfer is the drying of moist granular material in such a
bed, where the drying rate of individual particles can be established by the Filonenko method for m > 1
{61.

In this case

(1 — ,lp)m

F = — m==p_> 1 (26)
A R T
and
_ ezl 2
* iGo_‘ tu . (.-’7)

The variation of temperature tyg across the bed thickness is disregarded here, which usually does not re-
sult in large errors [2].

1b. Inequalities 8 = 1 and o < 0 are satisfied simultaneously, Then, along with (21), we have

F(0)=o0. (28)
These limitations predetermine the boundedness of integral (23) at y = 0 and thus the presence of a lower
boundary of the reaction zone:

E* (n) = g(lpox 0)' (29)

The rate at which this lower boundary shifts is found by differentiating Eq. (29) with respect ton, with @)
taken into account:

dt, 1

2 %0

As 7 increases in the course of the reaction, the rate decreases monotonically from infinite at 5 = 0
and, as in this case, approaches unity asymptotically at 5 — w,

We note that, at small vajues of 7, the material conversion factor y, at the surface is proportional
to ni/ t—a) accurately down to terms of the highest-order smallness, as follows from Eq. (5). For this
reason and with the same degree of accuracy at small values of 1, we have

de, T 31)
dan "

This case (8 = 1, o < 0) is of no practical use and only of purely theoretical interest,

2. Exponent 0 < 8 < 1 and, therefore
@ (32)
4T

In this case the reaction at the bed surface continues for a finite length of time (,(0) < ») and, after com-
pietion, the reaction zone separates. Moreover, the boundary condition 4) and thus also solution (22) are
valid on the interval 0 < n < n™(0). On the other hand, the boundary conditions (8) apply atn > 7*(0).
Therefore, the result of integrating Eq. (16) will be written here as

gl ) =E—5*(m). (33)

In order to determine the rate at which the upper boundary shifts, we differentiate Eq. (33) partially
with respect to n. Then, considering (20), (23), and the first of Egs. (1), we have
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dg*
dn

1, (34)

from where we obtain the following expression for the upper boundary of the reaction zone, by virtue of
¥l =n*() = 0
g =n—n*0) (m>n*(0). (35)

2a, Both inequalities 0 < 8 < 1 and 0 = o < 1 are satisfied. Moreover, (24) applies and the lower
boundary of the reaction zone £, () moves to infinity. Relation (22) for n < n*(0) and relation (33) for 7
> 1*(0) define the reaction trend throughout the entire bed half-space.

This case corresponds to a reaction for which function F (y) in the equations of formal kinetics is
determined according to formula (25) when 0 < <1l and 0 s < 1.

2b. Inequalities 0 < 8 < 1 and ¢ < 0 are satisfied simultaneously. Moreover, function F (y) satisfies
relations (28) and (32), and the width of the reaction zone within the bed of particles is always finite, Rela-
tion (22) describes the reaction trend till the instant n*(0), when the upper boundary of the reaction zone
separates from the bed surface, and it is valid only for 0 < ¢ < £,(n). Within this time interval, the lower
boundary £.(n) is determined according to formula (29) and it shifts deeper into the bed at a variable rate

1/ (30).

When 5 > n*(0), the reaction trend follows Eq. (33). The upper boundary £*) is defined according to
(35) and the lower boundary, by virtue of (33) and (35), is defined as

B (1) =g (1, 0) 4 n—1% (0) (36)

Thus, whenn > 1*(0), the boundaries ¢* and ¢, shift at the same unit rates, while the dimensionless thick-
ness of the reaction zone {,—£* and the dimensionless time 7* —n, are equal to the quadrature of g(1, 0)
(see 23)).

The material conversion factor y and thus also the quantity » equal to it are functions of the dif-
ference £ —n of two independent variables in the problem. At7 > n*(0), therefore, the mass-transfer pro-
cess acquires the characteristics of a traveling wave,

We note that, because zpoln =n*@) =1, the lower boundary shifts at a rate d¢,/dn which is continuous
at the instant n = n*(0).

Characteristic of this case is the reaction of particles within the inner diffusion region. Since the
resistance to external diffusion is low here at ¢y > 0, function F(y) can be represented as [3]

__(—ypn
I T @

A simple analysis of relation (37) shows that here @ =—1 and g =1/3.

In summary, we note that the general solution to system (1) reveals, for functions F () [7] physically
meaningful in specific cases, not only the form of functions y(, n) and » (£, n) but also how the material
conversion front moves in a bed of particles at any value of ¢ within the interval (0, 1). This makes it pos-
sible to almost always locate the boundaries of the reaction zone, even when they theoretically do not exist
(B=1, 0 =g < 1), For this purpose, it is sufficient in the derived solution to let i be close to unity or to
zero within any necessary accuracy. The thus defined approximate boundaries will have the properties de-
scribed in case 2b, within the same accuracy.

The derived solutions extend automatically to the case of a piecewise continuous function F (). In
this case, inside the reaction zone there appear additional movable boundaries which correspond to the re-
spective discontinuities of function F (). Such a situation can prevail, for instance, in a bed of drying moist
particles when 0 < 3 < Pep during the first stage of mass transfer (Jcr denoting the dehydration factor
which corresponds to the first critical moisture content) the drying rate is independent of the moisture con-
tent and thus F@) =1. If 0 < &) < Ycr, then, according to formulas (5), (19), and (22), the trend of the
drying process is described by the equations

P =mnexp(—E&) and x==exp(—E). (38)

On the other hand, if Yer < ¢y < 1 and, which is equivalent, n > Jcp, then the mass transfer at the bed sur-
face follows the relation
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n= lpcr‘[“ j. ?df%ﬁ . (39)

ber

The dehydration distribution within the zone immediately adjacent to the bed surface, where yopr < ¥ < ¢,
follows Eq. (22). The equation of the boundary of this zone (horizontal line y = y.4) is, accordingly,

g (bgy Wer) = Eer (40)

At £ > ¢.p, the dehydration factor is smaller than critical and, therefore, Eq., (22) becomes here

E=S¢ri In %)91: D

We note that, since F (y) = 1 for small values of y, exponent ¢ is equal to zero and, consequently, the
boundary of the drying zone (in a semiinfinite bed) moves to infinity.

Thus, it follows from the preceding analysis that solutions to specific mass-transfer problems
reduce to determining the quadratures of g(y,, ¢) and h(yy). This operation is performed for any physically
meaningful form of function F ().

NOTATION

¥ is the material conversion factor;

% is the dimensjonless analog of the motive force in the mass-transfer reaction;

i is the dimensionless time;

& is the dimensionless distance from the bed surface;

F@) is the dimensionless analog of mass transferability in bed particles;

tgo» tG  are the gas temperature at the bed entrance and inside the bed, respectively;

tM is the temperature of evaporation surface of particles in the drying process.
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