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A general  procedure is proposed for  the exact integration of a sys tem of quasil inear dif- 
ferential  equations often encountered in problems concerning the convective mass  t ransfer  
in a bed of granular  mater ia l  with react ion at the surface and in the volume of part icles.  

Various problems concerning the convective mass t ransfer  in a s tat ionary bed of homogeneous g ran-  
ular  mater ia l  can often be reduced [1-4] to solving the following dimensionless sys tem of differential equa- 
tions: 

O~ _ • (~2), O• • (~): (1) 
0~1 O~ 

The specific kind of function F(~) is determined by the mode of react ions which occur  at the surface and 
in the volume of part icles making up the bed [1-5]. 

We will outline here a general  procedure for the exact integration of sys tem (1). Individual problems 
were ea r l i e r  solved either as special  cases [1] or by numerical  methods [2]. The react ion equations (1) ap- 
ply only to the inside of the react ion zone (Fig. 1), which at a given instant of time is definedby the inequality 

~. 0]) > ~ > ~* 01). (2) 

The boundaries of the react ion zones 4, and 4" are not known a priori  and will be determined in the course 
of the solution. When ~ > ~,(~), the mater ia l  has not yet entered into a reaction with the gas and, conse-  
quently, �9 t = r = 0. On the other hand, the zone of mater ia l  which has reacted already (~ = ~ = 1) is defined 
by the inequality ~ < ~*07). 

At a fixed depth ~ the react ion begins at time ~7 = ~,(~), where function ~,(~) is the inverse  of function 
~, 07). Therefore,  the initial condition for sys tem (1) can be stated as 

J~-~,(~) - • = 0 .  (3) 

We note that 7.(0) = 0, inasmuch as the reac t ion  at the bed surface begins at ~ = 0. 

Formulat ing the boundary conditions is somewhat more difficult. When ~ < ~,(0), where function 
~*(~) is the inverse of function ~*(~), the mater ia l  at the surface has not yet reacted completely and, there-  
fore,  we have a single boundary condition: 

• [~=o = 1. (4) 

As a consequence of this condition, f rom Eq. (1) for ~ : 0 follows direct ly  an equation which charac ter izes  
the react ion trend in part icles at the bed surface:  

,1 = h (r (% = r !~=0), (5) 

For  convenience, time and distance will be represented by their dimensionless analogs ~ and }, r e spec -  
tively. 
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Fig. 1. Dis t r ibut ion of 
the m a t e r i a l  convers ion  
fac to r  ac ros s  the bed 
thickness at var ious  in-  
s tants  of t ime: ~?l < ~?*(0), 
~ > ~,(0) .  

with 

j ' d~ (~) 
h (q~) = F (~) 

0 

Function h(r mus t  exis t  for  sufficiently smal l  posi t ive values of G 
Otherwise,  re la t ion  (5) would be physical ly  meaningless  and the reac t ion  in 
the par t i c les  could not begin. At smal l  values  of r there fore ,  function F(r 
mus t  behave like r a ,  where  a is a r ea l  humber  s m a l l e r  than unity. 

The reac t ion  at the bed sur face  will be completed at the instant  of t ime 

~* (0) = h (I). (7) 

In the physical  sense ,  function F(r is posi t ive and becomes  ze ro  when 
--* 1. There fo re ,  nea r  unity F(r mus t  dec r ea se  like (1-r  (fl > 0). Con- 

sequently,  at ~ = 1 in tegra l  (6) is an i m p r o p e r  one and can exis t  only on 
the in te rva l  0 < fl < 1o In this case  the reac t ion  t ime at the bed sur face  
~? = V*(0) is finite (see Eq. (7)). When ~7 > ~7"(0), the reac t ion  zone s e p a r a t e s  
f r o m  the g e o m e t r i c  sur face  and the following two boundary conditions apply 
as a resul t :  

i=~*(~ = • {~=~'(~) = I. (8) 

When fi _> 1, on the other  hand, then in tegra l  (6) becomes  d ivergent  at r = 1 and the reac t ion  will continue 
for  an infinitely long t ime 07"(0) = .o). Moreover ,  the boundary condition (4) r ema ins  valid and toward the 
end of the reac t ion  is definable only as an approximat ion  within any n e c e s s a r y  accuracy.  

We note that the emergence  of two boundary conditions (8) instead of one (4) at ~ > m*(0) does not 
make the p rob lem inde te rmina te  because  the equation of boundary ~ = ~*(D is  not known. A s i m i l a r  s i tua -  
tion is found in the case  of the init ial  conditions (3). 

We will now proceed to the d i rec t  in tegra t ion of s y s t e m  (1) under the cons t ra in ts  (3), (4), and (8). 
This we begin by rewri t ing the f i r s t  of Eqs.  (1) as 

Oh 
- - =  z ( 9 )  

on 

and then different ia t ing it par t ia l ly  with r e s p e c t  to ~. Then, af ter  some t r ans fo rmat ions  and taMng Eqs. 
(1) into considerat ion,  we obtain 

0 ( 1 a~ ) (10) 

an F(-,) at + *  

This,  together  with the init ial  condition (3), yields 

1 Oq~ q-q~= 1 . ,~a_~_~ (11) 

Next we dif ferent ia te  the f i r s t  init ial  condition (3) with r e s p e c t  to ~. This yields 

o#at n=n.(%l ~- ~-~a~ n=n.<~l d~l,d~ - 0 .  (12) 

When F(0) # 0, it follows d i rec t ly  f r o m  re la t ion  (12) that 

1 

F (q~) 
a~ n=n,(m)= 1 &Pl d~l,. (I,3) 
a~ F(~) aq !n=~(~) d~ 

As a consequence of the f i r s t  of Eqs.  (1), we have then 

i a~ n=n..(~) - •  d~1, (14) 

1019 



and, 
Since the lower  boundary  of the r e a c t i o n  zone shif ts  at  a r a t e  d~ . / & ?  which cannot  be equal  to z e r o  

t he r e fo re ,  d~*/d~ < ,~ and r e l a t i on  (14), acco rd ing  to the second  of ini t ial  condit ions (3) b e c o m e s  

. = o .  
(15) 

F r o m  the cont inui ty  s tandpoint ,  this r e l a t ion  is valid a lso  when F(0) = 0. 
condi t ions  (3) e n s u r e s  that the o r d i n a r y  d i f ferent ia l  equat ion 

a ,  + ~F (~) = 0 
a~ 

will  apply to the ins ide of the r e a c t i o n  zone. Before  d i r e c t l y  in tegra t ing  Eq. (16), we let 

O In • = 0 ,  

which fol lows d i r e c t l y  f r o m  (16) and (1). F r o m  (17) we have 

Thus,  sa t i s fy ing  the ini t ia l  

(16) 

(17) 

~1 < *1" (0), 

• , q > ~3" (0). 
0s) 

F r o m  this exp res s ion ,  and in v iew of the boundary  condit ions (4), (8), we conclude that  

• = ~-%-, 0 < ~ . < . ~ * ( 0 )  09)  
% 

appl ies  as long as the r eac t i on  at  the bed su r f ace  is not comple ted .  

On the o ther  hand, a f te r  the r eac t i on  zone has s e p a r a t e d  f r o m  the bed su r f ace ,  

• = % ~1 > ~1" (0). (20) 

The solut ion to Eq. (16) and the r e a c t i o n  t rend in the bed volume depend mos t ly  on the values  of F(0) 
and of d F / d r 1 6 2  =1- The c h a r a c t e r  of these quant i t ies  can be es tab l i shed  by the values  of the e a r l i e r  in -  
t roduced  exponents  a and ft. Seve ra l  quant i ta t ive ly  d i f fe ren t  s i tua t ions  a re  poss ib le  he re .  

1. Exponent  fl _> 1 and, t he r e fo re  

d--F-F = I 0 [~ > 1, (21) 
d~ ,=1 [ const ~ = 1 .  

Then  the ins tan t  of t ime ~*(0) (7) moves  to infinity,  the r e a c t i o n  at the bed su r f ace  cont inues  inf ini tely l o n g ,  
and the upper  boundary  of the r e a c t i o n  zone ~*(~) p a s s e s  through the bed su r f ace .  How the m a t e r i a l  c o n v e r -  
s ion f a c t o r  v a r i e s  a c r o s s  the bed th ickness  is de te rmined ,  accord ing  to Eq. (16), f r o m  

g(%, ~ ) =  ~, (22) 

w h e r e  

g (%' ~)== j '  $Fdr162 , (23) 

and the c o n v e r s i o n  f ac to r  at the bed su r f a c e  is de t e rmined  f r o m  re l a t i on  (5). 

l a .  Along with inequal i ty  fl _> 1, inequal i ty  0 _< ~ < 1 is a lso  valid.  This means  that 

F ( O ) = t  0 o < a ' < l ,  (24) 
[ const ~ = 0. 

The in tegra l  in (23) is here  infinite fo r  ~ = 0 and, consequent ly ,  the r e a c t i o n  zone c o v e r s  the en t i r e  bed 
(~*(71) = ~). Such a s i tua t ion  can  o c c u r  when the r e a c t i o n  ins ide an individual  pa r t i c i e  is  in t rak ine t i c  {at a 
v a r i a b l e  s ize  Of the r e a c t i o n  sur face)  with au toca ta lys i s  (0 < a < 1} o r  without  it Ca = 0). F o r  such t rends  
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of the r e a c t i o n ,  func t ion  F(r can  be r e p r e s e n t e d  as  

F (9) = ~= (1 -- ,)~, (25) 

where exponent a characterizes the progress of autocatalysis and p characterizes the reduction of the 
reaction surface per unit particle volume during the reaction. We note that functions F(~b)of type (25) are 
often used in equations of formal kinetics [5] where, however, the exponents a and fi can be treated in a 
different manner. 

Another example of this kind of mass transfer is the drying of moist granular material in such a 
bed, where the drying rate of individual particles can be established by the Filonenko method for m > 1 
[6]. 

In th is  c a s e  

F (9) = (1 - -  4)" , m ~ ~ > 1 (26) 
n -[- B (1 -- 4) '~ 

and 

-- (27) 
tGo-- t~ 

The v a r i a t i o n  of t e m p e r a t u r e  t M a c r o s s  the bed t h i c k n e s s  i s  d i s r e g a r d e d  h e r e ,  which  u s u a l l y  does  not  r e -  
su l t  in l a r g e  e r r o r s  [2]. 

l b .  I n e q u a l i t i e s  3 - 1 and a < 0 a r e  s a t i s f i e d  s i m u l t a n e o u s l y .  Then,  a long wi th  (21), we have  

F (o) = oo. (28) 

T h e s e  l i m i t a t i o n s  p r e d e t e r m i n e  the b o u n d e d n e s s  of i n t e g r a l  (23) at  r = 0 and thus the p r e s e n c e  of a l o w e r  
b o u n d a r y  of the r e a c t i o n  zone:  

~. (0) = g (40, 0) (29) 

The r a t e  a t  which  this  l o w e r  b o u n d a r y  sh i f t s  i s  found by  d i f f e r e n t i a t i n g  Eq. (29) wi th  r e s p e c t  to 7, wi th  (4) 
t a k e n  into  account :  

d~, 1 
dn 4o (30) 

As 7 i n c r e a s e s  in  the c o u r s e  of the r e a c t i o n ,  the r a t e  d e c r e a s e s  m o n o t o n i c a l l y  f r o m  inf in i t e  a t  7 = 0 
and, as  in  th is  c a s e ,  a p p r o a c h e s  un i ty  a s y m p t o t i c a l l y  at  ~ --* ~ .  

We note that ,  a t  s m a l l  v a l u e s  of 7, the m a t e r i a l  c o n v e r s i o n  f a c t o r  r at  the s u r f a c e  is  p r o p o r t i o n a l  
to ~71/(1-c~) a c c u r a t e l y  down to t e r m s  of the h i g h e s t - o r d e r  s m a l l n e s s ,  a s  fo l lows  f r o m  Eq.  (5). F o r  th is  
r e a s o n  and wi th  the  s a m e  d e g r e e  of a c c u r a c y  at  s m a l l  v a l u e s  of 7, we have 

] 

d~ 

This  c a s e  (p > 1, c~ < 0) is  of no p r a c t i c a l  use  and only of p u r e l y  t h e o r e t i c a l  i n t e r e s t .  

2. Exponen t  0 < /3 < 1 and,  t h e r e f o r e  

(31) 

dF I 
d4 ~=1 =: - -  oo. (32) 

In this case the reaction at the bed surface continues for a finite length of time (7,(0) < ~) and, after com- 
pletion, the reaction zone separates. Moreover, the boundary condition (4) and thus also solution (22) are 
valid on the interval 0 < 7 < 7*(0). On the other hand, the boundary conditions (8) apply at 7 > ~*(0). 
Therefore, the result of integrating Eq. (16) will be written here as 

g (I, 9) = ~- -~*  (0). (33) 

In order to determine the rate at which the upper boundary shifts, we differentiate Eq. (33) partially 
with respect to 7. Then, considering (20), (23), and the first of Eqs. (i), we have 
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d~* = 1, (34) 
d~ 

f r o m  where  we obtain the fol lowing e x p r e s s i o n  fo r  the upper  boundary  of the r eac t i on  zone,  by v i r tue  of 

~*{~ =~*(0) = 0, 

~* - n - n* (0) (n > n* (0)). (35) 

2a. Both inequal i t ies  0 < fl < 1 and 0 _< ~ < 1 a re  sa t i s f ied .  Moreove r ,  (24) applies and the lower  
boundary  of the r eac t i on  zone ~.(~) moves  to infinity.  Re la t ion  (22) fo r  77 < ~*(0) and r e l a t ion  (33) for  77 
> ~?*(0) define the r e a c t i o n  t rend throughout  the en t i r e  bed ha l f - space .  

This case  c o r r e s p o n d s  to a r eac t i on  fo r  which funct ion F(r in the equat ions  of f o r m a l  kinet ics  is 
de t e rmined  acco rd ing  to f o r m u l a  (25) when 0 < fi < 1 and 0 _< ~ < 1. 

2b. Inequal i t ies  0 < fl < 1 and ~ < 0 a re  sa t i s f ied  s imul taneous ly .  M o r e o v e r ,  funct ion F(r sa t i s f ies  
r e la t ions  (28) and (32), and the width of the r e a c t i o n  zone within the bed of pa r t i c l e s  is a lways  finite.  R e l a -  
t ion (22) d e s c r i b e s  the r e a c t i o n  t rend till the ins tan t  77"(0), when the upper  boundary  of the r eac t i on  zone 
s e p a r a t e s  f r o m  the bed su r f ace ,  and it is  val id  only fo r  0 < ~ < ~,(~). Within this t ime in te rva l ,  the lower  
boundary  8.(~) is de t e rmined  acco rd ing  to f o r m u l a  (29) and it  shif ts  deepe r  into the bed at a va r i ab le  r a t e  

1/r (30). 

When ~ > V*(0), the r e a c t i o n  t rend fol lows Eq. (33). The upper  boundary  ~*(V) is defined acco rd ing  to 
(35) and the l ower  boundary ,  by v i r tue  of (33) and {35), is defined as 

~, 01) = g (1, O) .-~1 - -  n* (0). (36) 

Thus,  when ~3 > v*(O), the boundar ies  5" and ~ ,  shif t  at the s a m e  unit  r a t e s ,  while the d imens ion l e s s  th ick-  
ness  of the r e a c t i o n  zone ; , - ; *  and the d imens ion le s s  t ime ~* - ~ ,  a re  equal  to the quad ra tu r e  of g(1, 0) 
(see (23)). 

The m a t e r i a l  conve r s ion  f a c t o r  r and thus a l so  the quant i ty  ~ equal  to it a r e  funct ions of the dif-  
f e r ence  ~-~7 of two independent  va r i ab l e s  in the problem.  At ~7 > ~)*(0), t he re fo re ,  the m a . s s - t r a n s f e r  p r o -  
c e s s  a c q u i r e s  the c h a r a c t e r i s t i c s  of a t r ave l ing  wave.  

We note that, because  r =~*(0) = 1, the lower  boundary  shif ts  at a r a t e  d ~ . / d ~  which is continuous 
at the ins tan t  V = ~*(0). 

C h a r a c t e r i s t i c  of this case  is the r e a c t i o n  of pa r t i c l e s  within the inner  diffusion region.  Since the 
r e s i s t a n c e  to ex te rna l  diffusion is low he re  at  r > 0, funct ion F(r can be r e p r e s e n t e d  as [3] 

F ( ~ )  - ( 1 .  ~),/3 (37) 
1 - -  (1 - -  ~)J/a 

A s imple  ana lys i s  of r e l a t ion  (37) shows that  he re  ~ = - 1  and fi = 1 / 3 .  

In s u m m a r y ,  we note that  the gene ra l  so lut ion to s y s t e m  (1) r e v e a l s ,  fo r  funct ions F (r [7] phys ica l ly  
meaningful  in spec i f ic  ca ses ,  not  only the f o r m  of funct ions r ~?) and ~(~, ~) but a l so  how the m a t e r i a l  
c o n v e r s i o n  f ron t  moves  in a bed of pa r t i c l e s  at any value of r within the in te rva l  (0, 1). This makes  it p o s -  
s ible  to a l m o s t  a lways locate  the boundar ies  of the r e a c t i o n  zone,  even when they t heo re t i c a l l y  do not ex i s t  
(fi _> 1, 0 _< ~ < 1). F o r  this purpose ,  i t  is suff ic ient  in the der ived  solut ion to let  r be c lose  to unity o r  to 
z e r o  within any n e c e s s a r y  accu racy .  The thus defined approx ima te  boundar ies  will  have the p rope r t i e s  d e -  
s c r ibed  in case  2b, within the s a m e  a c c u r a c y .  

The der ived  solut ions extend au tomat i ca l ly  to the case  of a p iecewise  continuous funct ion F(r In 
this case ,  ins ide the r eac t ion  zone the re  appea r  addit ional  movab le  boundar ies  which c o r r e s p o n d  to the r e -  
spec t ive  d iscont inui t ies  of funct ion F (r Such a s i tua t ion  can  prevai l ,  f o r  ins tance ,  in a bed of d ry ing  mois t  
pa r t i c l e s  when 0 < r < r  dur ing  the f i r s t  s tage  of m a s s  t r a n s f e r  (r  denoting the dehydra t ion  f ac to r  
which c o r r e s p o n d s  to the f i r s t  c r i t i c a l  m o i s t u r e  content) the dry ing  ra te  is independent  of the m o i s t u r e  con-  
tent  and thus F(r = 1. If 0 < r < r  then, acco rd ing  to f o r m u l a s  (5), (19), and (22), the t rend of the 
d ry ing  p r o c e s s  is de sc r ibed  by the equat ions  

= ~1 exp (--  .~) and • - - -  exp ( - -  g). (38) 

On the o ther  hand, if r  < r < 1 and, which  is equivalent ,  ~ > r  then the m a s s  t r a n s f e r  at the bed s u r -  
face  follows the r e l a t ion  
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~o 

q __ ,cr{ - j] d• (39) 
F (,) 

~hcr 

The dehydration distribution within the zone immediately adjacent to the bed surface, where r < r < g0, 
follows Eq. (22). The equation of the boundary of this zone (horizontal line ~b = r is, accordingly, 

g (%, *cr) .... ~cr (40) 

At ~ > ~cr, the dehydrat ion fac tor  is sma l l e r  than cr i t ica l  and, therefore ,  Eq. (22) becomes here  

We note that, since F (~) = 1 for  small  values of ~ exponent a is equal to zero  and, consequently, the 
boundary of the drying zone (in a semiinfinite bed) moves to infinity. 

Thus, i t  follows f rom the preceding analysis that solutions to specif ic  m a s s - t r a n s f e r  problems 
reduce to determining the quadra tures  of g(r r and h(~0 ). This operat ion is per formed for  any physically 
meaningful fo rm of function F (r 

r 
~4 

F(r 
tGo, tG 
tM 

NOTATION 

is the material conversion factor; 
is the dimensionless analog of the motive force in the mass-transfer reaction; 
is the dimensionless time; 
is the dimensionless distance from the bed surface; 
is the dimensionless analog of mass transferability in bed particles; 
are the gas temperature at the bed entrance and inside the bed, respectively; 
is the temperature of evaporation surface of particles in the drying process. 
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